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B~icklund transformations for harmonic maps are described as the action of the 
structure group on harmonic one-forms or as gauge transformations of the 
soliton connection constructed via embedding the configuratio6 manifold into a 
fiat space. As an illustration, B/icklund transformations for maps from M 2 to 
the Poincar6 upper half-plane and for maps determining stationary vacuum 
gravitational fields with axial symmetry are obtained. 

1. INTRODUCTION 

Since its mathematical theory was first established by Eells and 
Sampson (1964), harmonic maps (HM) have been exploited considerably 
in physics especially through their applications in nonlinear a-models 
(Sanchez, 1982), Yang-Mil ls  fields (Chau et al., 1981), and Einstein's 
equations (Eri~, 1976; Eri~ and Nutku, 1974). Formulation of a physical 
theory in the framework of  HM not only provides a deeper insight into the 
geometrical background of  the theory (Misner, 1978), but also leads to the 
generation of new solutions to its field equations. In this work, the energy 

functional and its Euler-Lagrange equations are expressed in terms of  
differential forms, which offers a natural distinction between the kinemati- 
cal and the dynamical content of the theory, and thus uncovers its 
Hamiltonian structure. This formulation is also found useful for various 
descriptions of  B~icklund transformations (BT), which are in general differ- 
ential equations of order less than that of the original differential equation 
relating any solution of  the differential equation to another solution of the 
same equation. Usually, specific models have their specific methods for 
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generating new solutions. Here these are either attained by the action of the 
structure group on harmonic one-forms and (or) by gauge transforming the 
soliton connection constructed by embedding the configuration manifold 
into a fiat manifold such that the transformation parameters satisfy the 
HM equations. As an illustration, first a model field theory for which the 
configuration space for the fields is the Poincar6 upper half-plane (PUP) is 
demonstrated to be completely integrable. Then the HM formulation of  the 
stationary vacuum gravitational fields with axial symmetry (SVAS) is 
considered, and its BT are established. 

2. HARMONIC MAPS AND B~.CKLUND TRANSFORMATIONS 

2.1. Harmonic Maps 

Let f :  (M, g ) ~  (M', g ')  be a smooth map between two Riemannian 
manifolds of  dimensions m and m' with metrics ds 2 =gab dXa dXb and 
ds '2 = g'AB dY A dY B, respectively. The trace of  the induced metric f *  o g '  on 
M is called the energy density, and the energy functional is written as 

E ( f )  = t r ( f*  o g')  *1 = ~ tl.va u ^ *a v (1) 

where *1 is the invariant volume element on M. If  a~ ~ is a basis for the 
cotangent space T* such that ds'2=tl~vOgU| ~, then the pullback 
a u = f *  o r is a set of  one-forms whose values form a vector bundle on M. 
They satisfy 

Da" =- da ~ + f~v ^ a t = 0 (2) 

where t2"~ is the pulled-back connection one-form of M '  on M. With this 
definition of  f~v, the map f is harmonic if 

D *a ~' =- d*a # + f ~  ^ *a ~ = 0 (3) 

where *: TS*(M)-o Tm-S*(M) is the Hodge dual map defined by the 
Riemannian structure of  M. Consistency conditions of  (2) and (3) are, 
respectively, | ^ a t = 0 and O~, ^ *a t = 0, where |  =df~'~ + ~'~ ^ ~ 
is the curvature two-form on M induced from M'.  In what follows, 
one-forms a ~ satisfying (2) and (3) will be referred to as harmonic 
one-forms. 

2.2. Bficklund Transformations 

One can write a" = P~adx a, where PUa(fB, f a b  ) = h~a( fn ) faa  and 
h~ah~,B =g~B;  then (3) is a system of  first-order differential equations for 
the unknown functions P~a(fB, fB,b). However this definition of  P~t a is not 
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unique, since a t ransformation of  the form P ~ a ( f S ,  f S b ) ~ P ' U a  
( { ~ } , f S ,  fS ,b  ) can be found which leaves the field equations (2) and (3) 
invariant, where {~} denotes some set of  parameters. An immediate exam- 
ple is the t ransformation of  basis one-forms 

a"  ~ rr'u = A Uvcr v (4) 

such that the action integral (1) is left-form-invariant. This can geometri- 
cally be interpreted as the action of  the structure group G on the principal 
fiber P = (E, re, M, G), where n : f * T * ( M ' )  --* M .  I f  M is a two-dimensional 
manifold, *a"  are again one-forms; therefore one can consider the transfor- 
mation 

a"  ~ a "  = B"v *a" (5) 

or more generally the mixed transformation 

a ~ --*a "~ = AUvrr ~ + B"v *a  v (6) 

Using such a t ransformation and given a harmonic map f n ( x a ) ,  one can 
define a new map  f ' B ( x ~ )  through first-order differential equations 

P l ' , ~ ( f ' n , f ' n b  ) = P'~'a({Ot},fn,  fn ,b  ) (7) 

with {~} = {~(x~)}. The integrability of  (7) as well as the harmonicity 
of  the map  f ' n ( x " )  are satisfied if the transformed one-forms a 'u = 
P~',,( {o t} , fn ,  f n b  ) d x "  are harmonic: 

D a  'u = O, D *a  'u = 0 (8) 

which are first-order differential equations for the set of  parameters a. Since 
a u = P~ 'adx  ~ are harmonic one-forms, these equations are already inte- 
grable. Then (7) defines a B~icklund transformation for the H M  equations. 

I f  the induced connection on M can be written as f ~  = ~ , a  ~, with 
~ ' , ,  = const, then for a 'u in (6) to satisfy (8) the differential conditions on 
A and B are 

d A ~  - ~'t~A~,~al~ + ~u,~pAP~Aava/~ + ?~',~pBPpA'~ *a  p = 0 
(9) 

dB~'~ - y a ~ B V ; a P  + 71'~.;BPpB ~, *a  ~ + yu~.pAP~BZ~a p = 0 

The integrability of  these equations yields the following conditions: 

(10) 
- M' t~ t jBU z + M~'~p,~BZ~BPI~B~ ~ + Mu,~p,~BXuA~A~/~ = 0 

MU ~.p,, B ~ A P, B ~'~ = 0 
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Here, 

M~ t~= (?u ya +7~ ?zt~) (11) 

1 /t and MU~t~a ] = ~R ~,p, where the brackets denote antisymmetrization and 
l nu  ~ a p. If  RUmba is the Riemann tensor, which is defined by | = ~ ~B a ^ 

one considers the transformations (4) and (5) separately, then to obtain the 
conditions on A and B, it is sufficient to drop the last terms in equations (9) 
and (10). 

2.3. Flat Connection 

Due to the curvature of M' ,  HM equations are highly nonlinear 
second-order differential equations, for which it is not only difficult to find 
solutions, but also not at all obvious whether they are integrable or not. 
Instead of dealing with the HM equations, a system of algebraic and 
first-order differential equations which is linear with respect to the first 
derivatives can be set up, such that the existence of their solutions implies 
the integrability of the HM equations. This procedure consists in the 
construction of a fiat connection by embedding M '  into a flat manifold. A 
Riemannian manifold of  dimension m'  can always be embedded into a flat 
manifold Vn of dimension n = m" + p  < � 8 9  1), where p is the class of  
M '  (Eisenhart, 1966), whereas for the equations under consideration to be 
integrable, it is required that the curvature two-form of V, should not 
vanish identically, but with reference to the field equations. Since the 
property of being flat is invariant under gauge transformations, once such 
a fiat soliton connection ~ is constructed, BT follow readily, If  

~ f ~ '  = A -1 dA + A - i l I A  (12) 

then the curvature two-form transforms according to | 1 7 4  A - 1 |  
where A is an element of the group G associated with the Lie algebra, 
which is determined by the Riemannian structures of M, M',  and Vn. 
Hence, BT are nothing but the gauge transformations, which leave the field 
equations form-invariant (Crampin, 1978). 

We introduce the connection of 1I, in the form 

(w, (13) 
n"s = \niv s5 ] 

with the range of indices # , v = l  . . . . .  m', i , j = m ' + l  . . . . .  n, and 
R, S = 1 . . . . .  n, while flatness requires 

Df lRs  = df~Rs + t~RQ A f~Qs = 0 (14) 
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Here f~"v is the pulled-back connection of  M '  on M. The II 2 and S~ are 
subject to the equations 

O"v = --11ui A l-Iiv 

d11"i + f lus  ^ l-Pi = - I l U k  ^ Ski (15) 

+ ^ s 5  = ^ n )  

where O"v is by construction the curvature of M '  on M. Any two-form 
- 1I"; ^ 11"~, where II"; is the solution of  the differential equations in (15), 
satisfies the Bianchi identity. Defining 11"i as II",. = Q";~ *a v with dimension 
m = 2, we find that the first equation in (15) reduces to 

R " ~  a = e~lv / lk i (Q"k~QPia - -  QUkBQpi~)  (16) 

where Q"i~ are unknown functions of  the coordinates of M '  and e is 
determined by the signature of  M. It follows that, if M '  is of constant 
curvature, then Qua, can be chosen as constants. 

Restricting the dimensions to m = m' = 2, n = 3, and letting the metric 
of  V3 be d8 2 = diag(1, E, r/), E = + 1, ~/= + 1, we denote 

I-II3 --= I 'P  = p  *or1 + q *o  "2 , I-I23 ~--- 1"I2 = r ~ra I + S *0 "2 (17) 

In this case (S~.)= (0) and w is the only component of  the induced 
connection on M. Field equations (2) and (3) are explicitly written as 

da  I +co ^ a 2 = 0 ,  d a 2 - - E c o  ^ a I = 0  
(18) 

d * a ~  + c o o  ^ -ko.2__.~ 0,  d*o-2_  co2 A*Crl = 0  

In view of  (18) and using (17), flatness requires 

dco - eErl(ps - qr )~  1 A a 2 = 0 

(alp + (Eq + r)a0 ^ * a l + ( d q + ( s - p ) c o )  ^ * a 2 = 0  (19) 

(dr  + c(s - p)co) ^ *or I + (ds - (Eq + r)~o) ^ . ~ 2  = 0 

and hence 

K = e o l ( p s  - qr) (20) 

is the Gaussian curvature of  M' .  The functions p, q, r, s are the solutions of  
the particular set of  equations 

dp + (Eq + r)co = a c t  2, dq  + (s - p)co = - a a  I 
(21) 

dr + E(s - p ) c o  = bcr 2, ds - (Eq + r)co = - b ~  1 



1376 B a i k a l  and Eri~ 

for arbitrary functions a and b. These equations are integrable if 

(da+bog-K(cq+r)a l) ^ o-2 ~-- O, ( d a + b o g - K ( s - p ) a  2) ^ trl = 0 

(db - eaog - Ke(s - p)tr 1) ^ t r2=O,  (db - eaog + K(eq  + r)a 2) ^ a ~ = O  

(22) 

3. EXAMPLES 

3.1. The Poinear6 Upper Half-Plane 

Consider two Riemannian manifolds M and M '  with metrics 

ds 2 = d x  2 _ dy 2 

and 

(23) 

matrices as 

A = ( P l  q,~, 
r 1 S 1 / /  

Then (9) and (10) have solutions 

SI = P l ,  r l  = - - q l ,  

p~ = cos 2 cos 0, 

P2 = sin 2 cos 0, 

q2) (28) B- -  P2 
r 2 S 2 

$2 -~" P2 ,  r2 = - -  q2 ,  

ql = cos 2 sin 0 

q2 = sin 2 sin 0 

(29) 

ds "2 = ~ -2(d~2 + d~/2) (24) 

The manifold M '  is called the Poincar6 upper half-plane, which is the 
configuration space for the fields ~(x, y), ~/(x, y). The tetrad on M'  is chosen 
to be 

(D 1 = 4 -1 de, o92 = r  d~/ (25) 

and they have their pullbacks on M as 

t r ' = ~ - ' ( ~ x d x  + r  a 2 = ~ - ' ( t l r d x  + r l y d y )  (26) 

where 0 .2 is the only component of the induced connection on M with 
coefficients 

7111 =7212 = 7221 =7222=~211 = ]1121 = 0 
(27) 

~122~-  --]1212 = 1. 

With respect to the Riemannian structure of M, the Hodge dual is defined 
as * d x  = dy and *dy = dx.  As co = o "2 and e = +1,  HM equations (18) can 
easily be rewritten. To obtain a BT as in (6), denote the transformation 
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where 2 = const  and 

dO = - c o s  2 sin 0 a t + (cos 2 cos 0 - 1)o -2 

- sin 2 sin 0 *a  t + sin 2 cos 0 *a  2 (30) 

No te  that  BT relative to (4) or  (5) can be obtained simply by setting 2 = 0 
or  2 = 1r/2, respectively. 

To  investigate the integrability o f  the H M  equations,  it is o f  conve- 
nience to go to the null coordinates  2x = u + v and 2y = u - v; hence the 
Hodge  dual  is redefined as *du = du and *dr = - d r .  This fixes the indica- 
tor  e = + 1. F r o m  do~ = - c o  t ^ 092 it is seen that  the Gaussian curvature  o f  
M '  is - 1 .  With  the choice o f  r / =  + 1 and considering (20) one possible 
parametr izat ion is 

p = s  = c o s 2 ,  q = - - r  = s in2  (31) 

For  simplicity the arbi t rary functions a and b are set to zero. Then (21) or  
(22) implies 2 = const. With this choice o f  q, fl  is an so(3)-valued connec- 
tion one-form. I t  is also possible to choose q = -  1, which then forces 
changes in the parametr izat ion o f  (20), hence resulting an su(2, 1)-valued 
connect ion one-form. Taking 

(~ (!~ (i ~ X t =  - -1  0 , X 2 =  0 , ) ( 3 =  0 (32) 

0 0 0 - 1  

as the infinitesimal 3 • 3 matrix generators o f  SO(3), we can express the 
connect ion f~ as 

~') = ( / . IX 1 - -  I - i  l X 2  + II2X3 (33) 

One can also note that, defining new generators x~ by 

x l  = - 2 i X 1 ,  x2 = X2 - iX3, x3 = - ( X z  + iX3) (34) 

which satisfy the commuta t ion  relations o f  sl(2,  R) ,  we can construct  an 
A K N S  connect ion (Ablowitz  et al., 1973) 

i 1 2 ! 1 
= -~ ~oxl + ~ ( i l l  - r I  )x2 + ~ ( irI  z + FP)x3 (35) 

by making  use o f  the 2 • 2 infinitesimal matrix generators o f  SL(2,  R). 
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One-parameter subgroups of SO(3) associated with (32) are 

A(OI) 

A(03) 

A(03) 

Then, by their action on 

0-tl 

0-t2 

/cos01 - s i n  01 i )  

= / S i o 0 ,  COS010 

\ s in  02 0 c o s O 2 /  

(i 0 0 / = cos 03 sin 03 

--sin 03 cos 03/ 

as in (12), BT are found as 

= cos 01 0-1- sin 01 0-z 

= sin 01 0-J + c o s  01 0-2 

and 

0-,1 = cos 02 0-1 + sin 02 cos 2,0-1 

(36) 

(37) 

- sin Oz(cos 2 cot 2 + cosec 2) *a 2 
(38) 

0-,2 = cos 02 a 2 + sin 02 sin 2 *a I - sin 0 2 COS ,~ *0 -2 

where the transformation parameters are subject to the equations 

dOl = sin 01 0 "1 + (cos 01 -- 1)0- 2 

dO2 = - sin 0z 0-1 + sin 02(cos 2 2 cot 2 + cot 2 + sin ), cos 2)0- 2 (39) 

- cos 2(cos 02 - 1) ,0-1 _ sin 2(cos 02 - 1) ,0-2 

With the replacement 2-- ,2  + ~ / 2  and 02 ~ -03 ,  BT relative to A(03) is 
equivalent to the BT relative to A(02). Also note that with 2 = 0 and 
0---,01, transformation (6) with (29) and (30) is equivalent to the BT 
relative to A(01). Since BT are noncommutative, successive applications 
can be performed to generate an infinite family of  solutions depending on 
one constant and two variable parameters. 

3.2. Stationary Axisymmetric Gravitational Fields 

As another example, we consider the problem of  determining station- 
ary vacuum gravitational fields with axial symmetry. Following the ap- 
proach due to Ernst (1968), relevant field equations of  the theory are 
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derivable from the action integral 

I = do dz{ - V 7  �9 V2 + 2r -2((Vr + (V~b)2)} (40) 
co 

where V denotes the flat-space grad operator in coordinates p, z. (The more 
conventional f is replaced by r so that the complex Ernst potential reads 

= r + i~b.) The form of the action integral allows us to formulate the 
problem in terms of  harmonic maps f :  M --* M' ,  where M and M '  are two 
Riemannian manifolds with metrics 

and 

ds2 =dp2 + dz 2 (41) 

as '2 = - d r  d2 + 24 -2(a~ 2 + d4, ~) 

respectively. Choosing the tetrad on M '  to be 

coo = dr, (D 1 = d2, o92 = 21/24--1 de ,  o93 = 21/2r -1 d~b 

we find the nonvanishing components of the connection as 

1 1 1 1 
o92 =~o90 =52-~o9~ ' o93 = 5 o 9 o 3 = ~ 2  lo93, 

(42) 

(43) 

Their pullbacks on M are the set of one-forms 

a~ a2=21/2~-lCpdp+21/24-1r 
(45) 

a l=2odp+2zdz ,  a3=21/2r162 

whose values form a four-dimensional Riemannian-connected vector bun- 
dle over M. Defining the Hodge dual operation as *dp = dz, *dz = -dp ,  
we find that the action integral (40) takes the form 

I = ;M ( --O'0 A *0 "l "t- 0 .2 A *0.2 -I- 0 -3 A *0 "3) (46) 

while three of the field equations read 

D *al = d *al = O 

D *a2=d*0.2+�89 2 ̂  .0.1 .ji_ 2 +1/20.3 A "A'0.3 = 0 (47) 

D .0.3 _- d *a 3 + �89  3 A .0.1 _ 2--1/20.3 A *0 .2 = 0 

The remaining equation D *0 .~  is omitted simply because once a 
solution to (47) is found, r can be determined by quadratures. By the 

0923 = --(.032 ~ 2- -  1/217D 3 

(44) 
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redefinition of  the basis one-forms 

r i  ~ = 2-~cr l, H 2 = 2-1/2a 2, 1-i s = 2-~/za3 

the integrability condit ions become 

d171 = 0, d172 = 0, dii3 - -  173 A [ ' [ 2  = 0 

and the field equations reduce to 

d .171 + ii1 A . l i l  = 0 

d * l i  E + H 2 ^ .171 + 173 A .1-i3 = 0 

d *H 3 + 173 ^ * W  - H 3 ^ "1"I 2 = 0 

the t ransformat ion (4), which in this particular Consider  
expressed as 

where 

H "  = A ~ I Y +  B~. *FI j ( i , j= 1 ,2 ,3 )  

(Co 0 o / 
(A ~.) = cos ~O cos O - s i n  gt cos O 

sin g, cos 0 cos ~k cos 0 / 

Baokai and Eri~ 

(48) 

(49) 

(50) 

example is 

(51) 

(52) 

/ s in  fl 0 0 \ 
( B ' ) ) = [  0 cos~Osin0 - s i n ~ s i n 0 ~  (53) 

\ 0  sin qJ sin 0 cos ~ sin 0 / 

relations define a BT for the H M  equations (50) if the set of  These 
one-forms 17 'i and 17" satisfy equations (49) and (50). Then  the parameters  
{fl, 0, ~O} are subject to the equations 

d[3 - sin fl 171 + (cos 3 - 1) "171 = 0 

d~O - cos 0 sin ~O 172 _ sin 0 sin ~b *II  2 
(54) 

+ (1 - cos 0 cos ~)I-P - sin 0 cos ff ,173 = 0 

/3 = - 2 0  

which are integrable in view of  (49) and (50). The field equations (50) and 
the BT thus obtained are equivalent to those found by Neugebauer  (1979), 
which can be verified in view of  the system of  first-order differential 
equations for the unknown functions 

M, =�88 - '{(~p + ~b2 - i(~2 - ~bp)}, M3 = �89 - i2z) 
(55) 

M 2 = � 8 8 1 6 2 1 6 2 1 6 2  Nk=M,~ 
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and redefining the parameters 0 and ~k as 

1 ! ly 1/2) (56) cosO = ~ (~)1/2..{_ ~--1/2), COSIp = ~ (~--l/2"Jff 0~-- 

4. CONCLUSION 

We considered some methods to obtain B/icklund transformations of 
harmonic maps and applied these to maps which are from M 2 to the 
Poincar6 upper half-plane and from E 2 to a four-dimensional Riemannian 
manifold. The former example illustrates a model field, where the range 
manifold is a space of negative constant curvature. In the latter example, 
using the Ernst potentials, equations for stationary vacuum gravitational 
fields with axial symmetry are written in terms of harmonic maps, where 
the configuration manifold is not of constant curvature. Transforming the 
harmonic one-forms as prescribed in Section 2.2, we find B/icklund trans- 
formations which are equivalent to that of Neugebauer. Recently, construc- 
tion of B/icklund transformations based on the Lax-pair approach of the 
U(N) or-models has been discussed (Uhlenbeck, 1989). The references 
therein consider many techniques for finding new solutions of nonlinear 
field equations. It is known that there is a certain relationship between the 
symmetric space properties of M'  and the a-model formulation of the field 
theory expressed in the framework of harmonic maps (Eri~ et al., 1984). 
However, since the embedding procedure is carried out irrespective of the 
isometries of the configuration manifold, finding B/icklund transformations 
to field equations by gauge transforming the soliton connection can be 
applied to more general problems on the condition that the domain 
manifold M is effectively two-dimensional. 
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